四个基本不等式是什么-基本不等式的推广

2023-01-13 09:02:30 来源:教育之家

关于“四个基本不等式是什么,基本不等式的推广”,壹壹高考网 (http://www.yygled.com)小编为大家从网络整理了以下精彩内容,仅供参考阅读。壹壹高考网会持续对相关的内容进行更新。


(相关资料图)

一、四个基本不等式是什么

基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。

1四个基本不等式

基本不等式的四种形式:

1、a2+b2≧2ab(a,b∈R)

2、ab≦(a2+b2)/2(a,b∈R)

3、a+b≧2√ab(a,b∈R﹢)

4、ab≦[(a+b)/2]2(a,b∈R﹢)

2基本不等式的应用

和积互化

接下来跟着小编一起来看看“基本不等式的推广”的相关内容。

二、基本不等式的推广

说到不等式,大家都了解,有人问基本不等式的推广到3,当然了,还有朋友想问基本不等式的定理,这到底是咋回事?其实重要不等式和基本不等式呢,今天小编就与大家分享基本不等式的推广,欢迎大家参考和学习。

基本不等式的推广

柯西不等式:

设a1,a2,…an,b1,b2…bn均是实数,则有(a1b1+a2b2+…+anbn)^2≤(a1^2+a2^2+…an^2)*(b1^2+b2^2+…bn^2) 当且仅当ai=λbi(λ为常数,i=1,2.3,…n)时取等号。

排序不等式:

设a1,a2,…an;b1,b2…bn均是实数,且a1≥a2≥a3≥…≥an,b1≥b2≥b3≥…≥bn;则有a1b1+a2b2+…+anbn(顺序和)≥a1b2+a2b1+a3b3+…+aibj+…+anbm(乱序和)≥a1bn+a2bn-1+a3bn-2+…+anb1(逆序和),仅当a1=a2=a3=…an,b1=b2=b3=…=bn时等号成立。

常用的不等式的基本性质:a>b,b>c→a>c;

a>b →a+c>b+c;

a>b,c>0 → ac>bc;

a>b,c<0→ac

a>b>0,c>d>0 → ac>bd;

a>b,ab>0 → 1/a<1/b;

a>b>0 → a^n>b^n;

基本不等式:√(ab)≤(a+b)/2

那么可以变为 a^2-2ab+b^2 ≥ 0

a^2+b^2 ≥ 2ab

ab≤a与b的平均数的平方。

1、调和平均数:Hn=n/(1/a1+1/a2+...+1/an)

2、几何平均数:Gn=(a1a2...an)^(1/n)

3、算术平均数:An=(a1+a2+...+an)/n

4、平方平均数:Qn=√ [(a1^2+a2^2+...+an^2)/n]

这四种平均数满足Hn≤Gn≤An≤Qn

给分

基本不等式推广到n的形式是什么,四个

用数学归纳法证明,需要一个辅助结论。 引理:设A≥0,B≥0,则(A+B)n≥An+nAn-1B。 注:引理的正确性较明显,条件A≥0,B≥0可以弱化为A≥0,A+B≥0,有兴趣的同学可以想想如何证明(用数学归纳法)。 原题等价于:((a1+a2+…+an )/n)n≥a1a2…an。 当n=2时易证; 假设当n=k时命题成立,即 ((a1+a2+…+ak )/k)k≥a1a2…ak。那么当n=k+1时,不妨设ak+1是a1,a2 ,…,ak+1中最大者,则 k ak+1≥a1+a2+…+ak。 设s=a1+a2+…+ak, ((a1+a2+…+ak+1)/(k+1))k+1 =(s/k+(k ak+1-s)/(k(k+1)))k+1 ≥(s/k)k+1+(k+1)(s/k)k(k ak+1-s)/k(k+1) 用引理 =(s/k)k ak+1 ≥a1a2…ak+1。用归纳假设

高中数学基本不等式链是什么(四个不等式),麻烦画张图

高中数学基本不等式链如下:

算术平均数( arithmetic mean),又称均值,是统计学中最基本、最常用的一种平均指标,分为简单算术平均数、加权算术平均数。它主要适用于数值型数据,不适用于品质数据。根据表现形式的不同,算术平均数有不同的计算形式和计算公式。

平方平均数(quadratic mean),又名均方根(Root Mean Square),是指一组数据的平方的平均数的算术平方根。

调和平均数(harmonic mean)又称倒数平均数,是总体各统计变量倒数的算术平均数的倒数。调和平均数是平均数的一种。

几何平均数是对各变量值的连乘积开项数次方根。求几何平均数的方法叫做几何平均法。如果总水平、总成果等于所有阶段、所有环节水平、成果的连乘积总和时,求各阶段、各环节的一般水平、一般成果,要使用几何平均法计算几何平均数,而不能使用算术平均法计算算术平均数。

基本不等式三大定理

基本不等式有两种:基本不等式和推广的基本不等式(均值不等式)

基本不等式是主要应用于求某些函数的最大(小)值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。

(1)基本不等式

两个正实数的算术平均数大于或等于它们的几何平均数。

(2)推广的基本不等式(均值不等式)

时不等式两边相等。

基本不等式公式是什么

基本不等式公式:a+b≥2√(ab)。a大于0,b大于0,当且仅当a=b时,等号成立。

常用不等式公式:

①√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)

②√(ab)≤(a+b)/2

③a²+b²≥2ab

④ab≤(a+b)²/4

⑤||a|-|b| |≤|a+b|≤|a|+|b|

基本不等式应用:

1、应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”。所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.

2、在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式。

3、条件最值的求解通常有两种方法:

(1)一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;

(2)二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值。

基本不等式中常用公式

基本不等式中常用公式:

(1)√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。(当且仅当a=b时,等号成立)

(2)√(ab)≤(a+b)/2。(当且仅当a=b时,等号成立)

(3)a²+b²≥2ab。(当且仅当a=b时,等号成立)

(4)ab≤(a+b)²/4。(当且仅当a=b时,等号成立)

(5)||a|-|b| |≤|a+b|≤|a|+|b|。(当且仅当a=b时,等号成立)

不等式的特殊性质有以下三种:

①不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;

②不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;

③不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变。 总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最大值。

重要不等式和基本不等式

重要不等式

a2+b2>=2ab

基本不等式

(a+b)/2>=根号下ab

基本不等式推广

a+b+c>=3(abc)的开三次方

私人给你证明,加点分

设a+b+c/3=x

a+b>=2【(ab)开方】

c+x>=2【(cx)开方】

所以a+b+c+x>=2【(ab)开方】+2【(cx)开方】>=2*2根号(abcx^1/2)

>=4(abcx)^1/4

4x>=4(abcx)^1/4

x^(3/4)=(abc)^1/4

x^3>=abc

x>=(abc)的开三次方"

所以(a+b+c)/3>=(abc)的开三次方

最后祝你春节快乐

基本不等式

设a1,a2,a3,……,an都是正实数,则基本不等式可推广为: (a1a2a3a……an))^(1/n)≤(a1+a2+……+an)÷n   (当且仅当a1=a2=……an时取等号) 3个数,就是n=3 即(a1a2a3)^(1/3)≤(a1+a2+a3)÷3 (当且仅当a1=a2=a3时取等号)

以上是壹壹高考网 (http://www.yygled.com)小编为大家带来的“四个基本不等式是什么,基本不等式的推广”全部内容。全文均来源于网络。更多精彩内容,请关注壹壹高考网获取。

分享:
x 广告
x 广告

Copyright   2015-2022 魔方网版权所有  备案号:京ICP备2022018928号-48   联系邮箱:315 54 11 85 @ qq.com